本书收录了中央财经大学、中山大学等名校的考研真题,并由高分考生根据科目考试大纲、考研的参考教材和相关教师的授课讲义等对历年真题进行了详细解答,解题思路清晰、答案翔实,突出难度分析。
本书参考大量资料对徐国祥《统计学》(第2版)的课(章)后习题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
第一部分 名校考研真题 2013年中央财经大学432统计学考研真题及详解 一、单项选择题(本题包括1~20题共20个小题,每小题1.5分,共30分) 1在假设检验中,原假设与备择假设( )。 A.都有可能被接受 B.都有可能不被接受 C.只有一个被接受而且必有一个被接受 D.原假设一定被接受,备择假设不一定被接受 【答案】C查看答案 【解析】原假设与备择假设互斥,肯定原假设,意味着放弃备择假设;否定原假设,意味着接受备择假设。 2小王收集了1978年以来历年我国人均GDP与人均消费额的资料,如果要反映这一时期我国生产与消费的关系,应选择( )。 A.直方图 B.散点图 C.饼图 D.折线图 【答案】B查看答案 【解析】散点图是用二维坐标展示两个变量之间关系的一种图形。直方图是用于展示分组数据分布的一种图形。饼图主要用于表示一个样本(或总体)中各组成部分的数据占全部数据的比例,对于研究结构性问题十分有用。折线图主要用于反映现象随时间变化的特征。 3若一元回归方程中的回归系数为0,则自变量和因变量相关系数( )。
A.
B.
C.
D. 【答案】C查看答案
【解析】相关系数的计算公式为:
回归系数 4某连续变量数列末位组为开口组,下限为200,相邻组组中值为170,则末位组中值为( )。 A.230 B.200 C.210 D.180 【答案】A查看答案 【解析】对于求开口组的组中值公式为:
首组开口组组中值=组上限 末组开口组组中值=组下限+邻组组距的一半 由于本题要求的是末组开口组的组中值,因此为200+(200-170)=230。 5计算平均增长率最适宜的方法是( )。 A.算术平均数 B.调和平均数 C.几何平均数 D.加权平均数 【答案】C查看答案 【解析】平均增长率也称平均增长速度,它是时间序列中逐期环比值(也称环比发展速度)的几何平均数减1后的结果。因此,计算平均增长率最适宜的方法几何平均数。 6抽样推断的精确度和抽样误差的关系是( )。 A.前者高说明后者小 B.前者高说明后者大 C.前者变化而后者不变 D.两者没有关系 【答案】A查看答案 【解析】估计误差越小,估计的精度就越好;估计误差越大,估计的精度就越差。 7受极端数值影响最大的变异指标是( )。 A.极差 B.平均差 C.标准差 D.方差 【答案】A查看答案 【解析】极差是指一组数据的最大值与最小值之差。根据定义可知,极差只是利用了一组数据两端的信息,因此它极容易受极端值的影响。 8分别采用重复随机抽样和不重复随机抽样,两者样本均值的期望值( )。 A.相等 B.有时相等,有时不等 C.前者小于后者 D.后者小于前者 【答案】A查看答案
【解析】在无限总体情况下,总体均值设为 9在假设检验中,不能拒绝原假设意味着( )。 A.原假设肯定是正确的 B.原假设肯定是错误的 C.没有充分证据证明原假设是正确的 D.没有充分证据证明原假设是错误的 【答案】D查看答案
【解析】不拒绝原假设意味着所构造的与原假设相矛盾的小概率事件没有发生,但可能还有许多其他的与原假设矛盾的小概率事件,只能解释为“在显著性水平 10某商店销售量增长10%,商品零售价格也增长10%,则商品销售额增长( )。 A.25% B.15% C.20% D.21% 【答案】D查看答案
【解析】销售额=销售量
则商品销售额增长=(1+10%)
11已知
A.
B.
C.
D. 【答案】A查看答案
【解析】由于
12设两个相互独立的随机变量
A.
B.
C.
D. 【答案】B查看答案
【解析】随机变量
13设 A.40 B.34 C.25.6 D.17.6 【答案】C查看答案
【解析】
14若随机变量
A.
B.
C.
D. 【答案】D查看答案
【解析】根据已知条件可知
。
15设
则服从自由度为
A.
B.
C.
D. 【答案】A查看答案
【解析】由中心极限定理可知
16设总体
A.
B.
C.
D. 【答案】C查看答案
【解析】
17在假设检验时,若增大样本容量,则犯两类错误的概率( )。 A.都增大 B.都减小 C.都不变 D.一个增大一个减小 【答案】B查看答案
【解析】在样本容量不变的条件下, 18在复合假设检验中,“=”一般放在( )。 A.原假设上 B.备择假设上 C.可以放在原假设上,也可以放在备择假设上 D.有时放在原假设上,有时放在备择假设上 【答案】A查看答案
【解析】在复合假设检验中,等号总是放在原假设上。将符号“=”放在原假设上是因为我们想涵盖备择假设 19当峰度系数等于0时,次数分布曲线为( )。 A.尖顶峰度 B.标准峰度 C.平顶峰度 D.U型分布 【答案】B查看答案 【解析】峰度是描述分布尖峭程度和(或)尾部粗细的一个特征数。峰度通常是与标准正态分布相比较而言的。如果一组数据服从标准正态分布,则峰度系数为0;如果峰度系数大于0,此时为尖峰分布;如果峰度系数小于0,此时为扁平分布。
20样本
A.
B.
C.
D. 【答案】C查看答案
【解析】在正态总体、方差已知或非正态总体、大样本情况下,总体均值的假设检验统计量采用的是z统计量。在正态总体、方差未知、小样本情况下,总体均值的假设检验统计量采用的是t统计量。AB两项采用的都是 二、简答题(本题包括1~5题共5个小题,每小题10分,共50分)。 1简述非抽样误差类型。 答:非抽样误差是相对抽样误差而言的,是指除抽样误差之外的,由于其他原因引起的样本观察结果与总体真值之间的差异。无论是概率抽样、非概率抽样,或是在全面调查中,都有可能产生非抽样误差。非抽样误差有以下几种类型: (1)抽样框误差,是指抽样框中的单位与研究总体的单位不存在一一对应的关系,使用这样的抽样框抽取样本就会出现一些错误。 (2)回答误差,是指被调查者在接受调查时给出的回答与真实情况不符。导致回答误差的原因有多种,主要有理解误差、记忆误差和有意识误差。 (3)无回答误差,是指被调查者拒绝接受调查,调查人员得到的是一份空白的答卷。 (4)调查员误差,是指由于调查员的原因而产生的调查误差。 (5)测量误差,是指如果调查与测量工具有关,则很可能产生测量误差。 2简述描述离散程度的统计量和适用类型。 答:衡量数据离散程度的统计量主要有极差、平均差、方差和标准差,其中最常用的是方差和标准差。
(1)极差是指一组数据的最大值与最小值之差。用
极差是描述数据离散程度的最简单测度值,计算简单,易于理解,但它容易受极端值的影响。由于极差只是利用了一组数据两端的信息,不能反映出中间数据的分散状况,因而不能准确描述出数据的分散程度。 (2)平均差也称平均绝对离差,它是各变量值与其平均数离差绝对值的平均数。平均差以平均数为中心,反映了每个数据与平均数的平均差异程度,它能全面准确地反映一组数据的离散状况。平均差越大,说明数据的离散程度越大;反之说明数据的离散程度小。为了避免离差之和等于零而无法计算平均差这一问题,平均差在计算时对离差取了绝对值,以离差的绝对值来表示总离差,这就给计算带来了不便,因而在实际中应用较少。但平均差的实际意义比较清楚,容易理解。 (3)方差是各变量值与其平均数离差平方的平均数。它在数学处理上是通过平方的办法消去离差的正负号,然后再进行平均,方差开方后即得到标准差,方差或标准差能较好地反映出数据的离散程度,是实际中应用最广泛的离散程度测度值。与方差不同的是,标准差是具有量纲的,它与变量值的计量单位相同,其实际意义要比方差清楚。因此,在对实际问题进行分析时更多地使用标准差。 3简述估计量的无偏性,有效性和一致性。 答:(1)无偏性
若估计量
则称 (2)有效性
设
(3)一致性(相合性)
如果
则称 4简述相关系数和函数关系的差别。 答:变量之间的关系可分为两种类型:函数关系和相关关系。 (1)函数关系
设有两个变量 (2)相关关系 相关关系是指变量之间确实存在的但关系值不固定的相互依存关系。在这种关系中,当一个(或几个)变量的值确定以后,另一个变量的值虽与它(或它们)有关,但却不能完全确定。这是一种非确定的关系。 5简述时间序列的组成要素。 答:时间序列的组成要素分为4种,即趋势或长期趋势、季节性或季节变动、周期性或循环波动、随机性或不规则波动。 (1)趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动,也称长期趋势; (2)季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动; (3)周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动; (4)随机性也称不规则波动,是指偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。 三、计算与分析题(本题包括1—4题共4个小题,第1-2题每题10分,第3-4题每题25分,共70分) 1.某大学为了解学生每天上网的时间,在全校7500名学生中采取重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):
求该校大学生平均上网时间的置信区间,置信水平为95%
解:抽取的样本容量
。此时可用样本方差代替总体方差,则总体均值在置信水平为95%下的置信区间为:
。
根据表格中的数据可求得:
代入数据可得该校大学生平均上网时间在置信水平为95%下的置信区间为:
2一学生接连参加同一课程的两次考试。第一次及格的概率为
解:设事件A为第一次及格,事件B为第二次及格,事件C为至少有一次及格。则有
。 则至少有一次及格的概率:
即他取得该资格的概率为 3一家超市连锁店进行一项研究,确定超市所在的位置和竞争者的数量对销售额是否有显著影响。下面是获得的月销售额数据(单位:万元)。 对上述数据做双因素交互效应方差分析,结果如下。 差异源SS df MS F P-va1ue 超市位置 930.6667 2 465.3333 4.7713 0.0180 交互 1042.2220 6 173.7037 1.7811 0.1457 内部 2340.6670 24 97.5278 总计 5028.0000 35 根据上述信息,撰写一份研究报告,报告至少涵盖下面三项内容: (1)竞争者的数量对销售额是否有显著影响; (2)超市的位置对销售额是否有显著影响; (3)竞争者的数量和超市的位置对销售额是否有交互影响。 解:由Excel输出的方差分析表如下表所示。 方差分析表
由于P-value=1.57E-5<
P-value=9.18E-08<
P-value=0.01605> 4一家电器销售公司的管理人员认为,每月的销售额是广告费用的函数,并想通过广告费用对月销售额作出估计。下面是近8个月的销售额与广告费用数据。 以月销售收入为因变量,电视广告费用和报纸广告费用为自变量,得到结果如下。 系数估计 标准误差t Stat P-va1ue Intercept 81.9401 1.3542 60.5080 0.0000 电视广告费用 2.7687 0.3252 8.5135 0.0010 报纸广告费用 1.2929 0.2464 5.2473 0.0063 根据上述信息,撰写一份报告,报告至少涵盖下面三项内容: (1)回归方程的假定; (2)电视广告费用对月销售收入的作用; (3)报纸广告费用对月销售收入的作用。
解:(1)由结果可得回归方程为: 回归方程的假定条件是:①因变量y与自变量x之间具有线性关系。②在重复抽样中,自变量x的取值是固定的,即假定x是非随机的。③误差项ε是一个期望值为0的随机变量,即E(ε)=0。④对于所有的x值,ε的方差σ2都相同。⑤误差项ε是一个服从正态分布的随机变量,且独立,即ε~N(0,σ2)
(2)回归系数
(3)回归系数 |