十年专注教育,走向成功职业人生。

本站共123225种辅导资料,试读、试看满意后,放心购买永久售后全网下载73284956次。



返回
顶部
当前位置: 首页 >> 经典教材

浙大概率论与数理统计第4版答案

[] [] [] 发布人:凿光学习网   发布日期:2020-03-06 17:16   共 143 人浏览过

浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解

本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容:

(1)梳理知识脉络,浓缩学科精华。本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。因此,本书的内容几乎浓缩了该教材的所有知识精华。

(2)详解课后习题,巩固重点难点。本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。

(3)精编考研真题,培养解题思路。本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。

(4)免费更新内容,获取最新信息。本书定期会进行修订完善,补充最新的考研真题和答案。对于最新补充的考研真题和答案,均可以免费升级获得。


在线阅读:http://zgw.100xuexi.com/Ebook/99538.html


当前位置:首页 > 理工类 > 经典教材 > 数学类(含运筹学) > 浙江大学《概率论与数理统计》


目录
第1章 概率论的基本概念
 1.1 复习笔记
 1.2 课后习题详解
 1.3 考研真题详解
第2章 随机变量及其分布
 2.1 复习笔记
 2.2 课后习题详解
 2.3 考研真题详解
第3章 多维随机变量及其分布
 3.1 复习笔记
 3.2 课后习题详解
 3.3 考研真题详解
第4章 随机变量的数字特征
 4.1 复习笔记
 4.2 课后习题详解
 4.3 考研真题详解
第5章 大数定律及中心极限定理
 5.1 复习笔记
 5.2 课后习题详解
 5.3 考研真题详解
第6章 样本及抽样分布
 6.1 复习笔记
 6.2 课后习题详解
 6.3 考研真题详解
第7章 参数估计
 7.1 复习笔记
 7.2 课后习题详解
 7.3 考研真题详解
第8章 假设检验
 8.1 复习笔记
 8.2 课后习题详解
 8.3 考研真题详解
第9章 方差分析及回归分析
 9.1 复习笔记
 9.2 课后习题详解
 9.3 考研真题详解
第10章 bootstrap方法
 10.1 复习笔记
 10.2 课后习题详解
 10.3 考研真题详解
第11章 在数理统计中应用Excel软件
 11.1 复习笔记
 11.2 课后习题详解
 11.3 考研真题详解
第12章 随机过程及其统计描述
 12.1 复习笔记
 12.2 课后习题详解
 12.3 考研真题详解
第13章 马尔可夫链
 13.1 复习笔记
 13.2 课后习题详解
 13.3 考研真题详解
第14章 平稳随机过程
 14.1 复习笔记
 14.2 课后习题详解
 14.3 考研真题详解

内容简介
隐藏

本书特别适用于参加研究生入学考试指定考研参考书目为浙江大学《概率论与数理统计》(第4版)的考生。也可供各大院校学习浙江大学《概率论与数理统计》(第4版)的师生参考。

浙江大学盛骤等主编的《概率论与数理统计》(第4版)是我国高校理工科专业广泛采用的权威教材之一,也被众多高校(包括科研机构)指定为考研数学公共课参考书目。

为了帮助参加研究生入学考试指定参考书目为浙江大学盛骤等主编的《概率论与数理统计》(第4版)的考生复习专业课,我们根据该教材的教学大纲和历年考研真题精心编写了浙江大学《概率论与数理统计》(第4版)辅导用书(均提供免费下载,免费升级):

本书提供电子书及打印版,方便对照复习。

图书描述
隐藏

图书的内容可能会存在过时等问题,而电子书的内容是实时更新的,最新内容均以电子书为准。

电子书产品界面及功能
隐藏

1.电子书产品(电子书、题库、视频、录屏、全套等),非实物,一旦购买无法退换。

2.购买后可在手机、电脑、平板等多种平台同步使用。


以下图片为电子书产品界面及功能展示,非本产品内容,仅供参考。

试读(部分内容)
隐藏

第1章 概率论的基本概念

1.1 复习笔记

在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.

一、随机试验

1.定义

试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.

2.试验的特点

(1)可以在相同的条件下重复地进行;

(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;

(3)进行一次试验之前不能确定哪一个结果会出现.

在概率论中,将具有上述三个特点的试验称为随机试验.

二、样本空间、随机事件

1.样本空间

随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.

2.随机事件

一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.

特别地,由一个样本点组成的单点集,称为基本事件.

样本空间S包含所有的样本点,它是S自身的子集:

(1)在每次试验中它总是发生的,S称为必然事件.

(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.

3.事件间的关系与事件的运算

事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,Ak(k=1,2,…)是S的子集.

(1)包含关系

①若,则称事件B包含事件A,即事件A发生必导致事件B发生;

②若,即A=B,则称事件A与事件B相等.

(2)和事件

事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B中至少有一个发生时,事件AB发生.

为n个事件A1,A2,…,An的和事件;称为可列个事件A1,A2,…的和事件.

(3)积事件

事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B同时发生时,事件A∩B发生.A∩B也记作AB.

为n个事件A1,A2,…,An的积事件;称为可列个事件A1,A2,…的积事件.

(4)差事件

事件A-B={x|x∈A且xB)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.

(5)互斥

,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.

(6)逆事件

若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为

(7)定律

设A,B,C为事件,则有:

①交换律:A∪B=B∪A;A∩B=B∩A;

②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;

③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);

④德摩根律:

三、频率与概率

1.频率

(1)定义

在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数,比值nA/n称为事件A发生的频率,并记成

(2)基本性质

③若A1,A2,…,Ak是两两互不相容的事件,则

2.概率

(1)定义

设E是随机试验,S是它的样本空间.对于E的每一事件A赋予一个实数,记为P(A),称为事件A的概率,如果集合函数满足下列条件:

①非负性:对于每一个事件A,有P(A)≥0;

②规范性:对于必然事件S,有P(S)=1;

③可列可加性:设A1,A2,…是两两互不相容的事件,即对于,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….

(2)性质

②(有限可加性)若A1,A2,…,An是两两互不相容的事件,则有

P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An)

③设A,B是两个事件,若,则有

P(B-A)=P(B)-P(A)与P(B)≥P(A)

④对于任一事件A,P(A)≤1;

⑤(逆事件的概率)对于任一事件A,有

⑥(加法公式)对于任意两事件A,B有P(A∪B)=P(A)+P(B)-P(AB);

一般,对于任意n个事件A1,A2,…,An,可以用归纳法证得

四、等可能概型(古典概型)

1.定义

如果一个试验具有以下两个特点:

(1)试验的样本空间只包含有限个元素;

(2)试验中每个基本事件发生的可能性相同.

则这种试验称为等可能概型,又称古典概型.

2.等可能概型的计算公式

若事件A包含k个基本事件,即A=,这里是1,2,…,n中某k个不同的数,则有

五、条件概率

1.条件概率

(1)定义

设A,B是两个事件,且P(A)>0,称

为在事件A发生的条件下事件B发生的条件概率.

(2)性质

①非负性:对于每一事件B,有P(B|A)≥0;

②规范性:对于必然事件S,有P(S|A)=1;

③可列可加性:设B1,B2,…是两两互不相容的事件,则有

2.乘法定理

(1)设P(A)>0,则有P(AB)=P(B|A)P(A),又称乘法公式.

(2)一般,设A1,A2,…,An为n个事件,n≥2,且,则有

3.全概率公式和贝叶斯公式

(1)样本空间划分的定义

设S为试验E的样本空间,B1,B2,…,Bn为E的一组事件.若

,i≠j,i,j=l,2,…,n;

②B1∪B2∪…∪Bn=S,

则称B1,B2,…,Bn为样本空间S的一个划分.

若B1,B2,…,Bn是样本空间的一个划分,则对每次试验,事件B1,B2,…,Bn中必有一个且仅有一个发生.

(2)全概率公式

设试验E的样本空间为S,A为E的事件,B1,B2,…,Bn为S的一个划分,且(i=1,2,…,n),则

P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+…+P(A|Bn)P(Bn)

(3)贝叶斯公式

设试验E的样本空间为S,A为E的事件,B1,B2,…,Bn为S的一个划分,且(i=1,2,…,n),则

注:在n=2的情况下,全概率公式和贝叶斯公式分别成为

六、独立性

1.两个事件独立

(1)定义

设A,B是两事件,如果满足等式P(AB)=P(A)P(B),则称事件A,B相互独立.

(2)两个定理

①设A,B是两事件,且P(A)>0,若A,B相互独立,则P(B|A)=P(B).反之亦然.

②若事件A与B相互独立,则下列各对事件也相互独立

A与与B,

2.三个事件独立

设A,B,C是三个事件,如果满足等式

则称事件A,B,C相互独立.

3.n个事件独立

(1)定义

设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1, A2,…,An相互独立.

(2)两个推论

①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的.

②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立.


常见问题
隐藏

打印版及图书常见问题

  1.打印版能否单独购买?

  答:不能。打印版是为已购买电子书产品(电子书、题库等)的用户所提供的相对应的赠品,非卖品,严禁商用。


  2.打印版页数及内容问题。

  答:由于排版差异,打印版实际页数与描述可能略为不同,以实物为准。打印版的内容可能会存在过时等问题,而电子书的内容是实时更新的,最新内容均以电子书内容为准。


  3.关于发货

  答:默认中通或韵达快递发货。一般除春节等节假日及特殊情况外,正常发货时间为3天左右,如有特殊情况,可及时联系在线客服。如特殊指定顺丰快递或其他快递的,请联系在线客服补运费差价。


  4.签收提醒

  答:买家签收或委托第三方签收,签收时务必查看包裹是否完整,如有破损或挤压变形等情况,请检查购买商品的数量和外观,有问题请及时联系我们或拒绝签收,一旦签收即表示收到的商品完好无损,如有损失则由买家承担。


  5.退换货问题

  答:打印版属于赠品,不支持退换货,但如果出现发错货等服务问题及缺页、空白页等质量问题,可申请补发。

  图书支持7天内无理由退换货(电子书产品除外,自己承担运费),自签收之时起(以快递官网签收时间为准),7天内非质量问题退换货的运费由买家承担,因质量问题退换货的运费由本站承担(如有涂写、损坏等影响二次销售的行为不支持退换货)。


电子书常见问题

  1.电子书产品(电子书、题库、视频、全套等)能在几种设备上使用?如何使用?

  答:支持电脑(WIN10、WIN8、WIN7)、手机、平板等多端同步使用。电脑端在线版在本网站登录即可使用,电脑端下载版只能绑定一台电脑使用,手机端及平板等移动设备访问并登录本网站即可使用。


  2.我的账号登录密码是多少?

  答:你的账号密码默认是你注册时填写的手机号。本网站采用手机号一键快捷注册机制,填写手机号,提交即可注册,系统自动以你填写的手机号作为密码保存下来。

  如果你自己修改过密码,忘记了,请在登录时,点击下方的“忘记密码?”按钮,填写你的手机号及短信验证码即可重新设置密码。

  提醒:注册时,请务必准确填写本人使用手机号,注册以后可以随时通过手机号找回密码、修改密码等安全操作。


  3.我已购买的电子书在哪里查看?

  答:电脑或手机上登录后点击“查看购买记录”。

  请务必确认,你是使用购买了电子书产品的账号登录查看。


  4.视频可以离线观看吗?

  答:不可离线观看。


  如你在使用中遇到了其他无法自行解决的问题,请联系客服。


关于我们 | 辅导协议 | 题库介绍 | 宝贝购买 | 联系我们 | 诚聘英才 | 手机网站 | 管理后台

2007-2019 . All rights reserved. 

 全国热线:13246610996  QQ/VX:2327204663  乐老师

 凿光学习网  http://zgw.100xuexi.com/
 营业执照增值电信业务经营许可证出版经营许可证网络文化经营许可证
国家高新技术企业中关村高新技术企业 湖北省版权示范单位 知识产权管理体系认证 教育行业诚信推荐企业 安全联盟信誉企业 AAA级信用企业 瞪羚企业

 

关注公众号

获取最新考试资料信息


圣才电子书(武汉)有限公司 提供技术支持和信息存储空间
在线客服